Skip to main content

10 posts tagged with "conference"

View All Tags

· One min read

Abstract

Radio frequency identification (RFID) technology can be utilized to monitor tagged product movements and directions for the purpose of inventory management. It is important for RFID gate to identify the several RFID readings such as movement type and direction as well as the static tags (tags that accidentally read by the reader). In this study, random forest (RF) method is utilized to detect the movement type and direction of RFID passive tags. The input features are derived from received signal strength (RSS) and timestamp of tags. The result showed that machine learning models successfully distinguish direction and movement type of tag. In addition, proposed model based on random forest generated accuracy as much as 98.39% and was significantly superior to the other models considered.



Published in: IEEE Xplore
DOI: 10.1109/ICST47872.2019.9166196

· One min read

Abstract

Predicting future blood glucose (BG) level for diabetic patients will help them to avoid critical conditions in the future. This study proposed Extreme Gradient Boosting (XGBoost), an ensemble learning model to predict the future blood glucose value of diabetic patients. The clinical dataset of Type 1 Diabetes (T1D) patients was utilized and the prediction models were generated to predict future BG of 30 and 60 minutes ahead of time. The prediction models have been tested tofive children who develop T1D and showed that BG prediction model based on XGBoost outperformed other models, with average of Root Mean Square Error (RMSE) are 23.219 mg/dL and 35.800 mg/dL for prediction horizon (PH) 30 and 60 minutes respectively. In addition, the result showed that by utilizing statistical-based features as additional attributes, most of the performance of predictions model were increased.

Published in: IOP Conference Series: Materials Science and Engineering
DOI: 10.1088/1757-899X/803/1/012012

· 2 min read

Abstract

Understanding customer shopping behavior in retail store is important to improve the customers' relationship with the retailer, which can help to lift the revenue of the business. However, compared to online store, the customer browsing activities in the retail store is difficult to be analysed. Therefore, in this study the customer shopping behavior analysis (i.e., browsing activity) in retail store by utilizing radio frequency identification (RFID)-enabled shelf and machine learning model is proposed. First, the RFID technology is installed in the store shelf to monitor the movement tagged products. The dataset was gathered from receive signal strength (RSS) of the tags for different customer behavior scenario. The statistical features were extracted from RSS of tags. Finally, machine learning models were utilized to classify different customer shopping activities. The experiment result showed that the proposed model based on Multilayer Perceptron (MLP) outperformed other models by as much as 97.00%, 96.67%, 97.50%, and 96.57% for accuracy, precision, recall, and f-score, respectively. The proposed model can help the managers better understand what products customer interested in, so that can be utilized for product placement, promotion as well as relevant product recommendations to the customers.

Published in: IOP Conference Series: Materials Science and Engineering
DOI: 10.1088/1757-899X/803/1/012022