Skip to main content

17 posts tagged with "machine learning"

View All Tags

· 2 min read

Abstract

Detecting self-care problems is one of important and challenging issues for occupational therapists, since it requires a complex and time-consuming process. Machine learning algorithms have been recently applied to overcome this issue. In this study, we propose a self-care prediction model called GA-XGBoost, which combines genetic algorithms (GAs) with extreme gradient boosting (XGBoost) for predicting self-care problems of children with disability. Selecting the feature subset affects the model performance; thus, we utilize GA to optimize finding the optimum feature subsets toward improving the model’s performance. To validate the effectiveness of GA-XGBoost, we present six experiments: comparing GA-XGBoost with other machine learning models and previous study results, a statistical significant test, impact analysis of feature selection and comparison with other feature selection methods, and sensitivity analysis of GA parameters. During the experiments, we use accuracy, precision, recall, and f1-score to measure the performance of the prediction models. The results show that GA-XGBoost obtains better performance than other prediction models and the previous study results. In addition, we design and develop a web-based self-care prediction to help therapist diagnose the self-care problems of children with disabilities. Therefore, appropriate treatment/therapy could be performed for each child to improve their therapeutic outcome.

Published in: Mathematics
DOI: 10.3390/math8091590

· One min read

Abstract

Radio frequency identification (RFID) technology can be utilized to monitor tagged product movements and directions for the purpose of inventory management. It is important for RFID gate to identify the several RFID readings such as movement type and direction as well as the static tags (tags that accidentally read by the reader). In this study, random forest (RF) method is utilized to detect the movement type and direction of RFID passive tags. The input features are derived from received signal strength (RSS) and timestamp of tags. The result showed that machine learning models successfully distinguish direction and movement type of tag. In addition, proposed model based on random forest generated accuracy as much as 98.39% and was significantly superior to the other models considered.



Published in: IEEE Xplore
DOI: 10.1109/ICST47872.2019.9166196

· 2 min read

Abstract

Heart disease, one of the major causes of mortality worldwide, can be mitigated by early heart disease diagnosis. A clinical decision support system (CDSS) can be used to diagnose the subjects’ heart disease status earlier. This study proposes an effective heart disease prediction model (HDPM) for a CDSS which consists of Density-Based Spatial Clustering of Applications with Noise (DBSCAN) to detect and eliminate the outliers, a hybrid Synthetic Minority Over-sampling Technique-Edited Nearest Neighbor (SMOTE-ENN) to balance the training data distribution and XGBoost to predict heart disease. Two publicly available datasets (Statlog and Cleveland) were used to build the model and compare the results with those of other models (naive bayes (NB), logistic regression (LR), multilayer perceptron (MLP), support vector machine (SVM), decision tree (DT), and random forest (RF)) and of previous study results. The results revealed that the proposed model outperformed other models and previous study results by achieving accuracies of 95.90% and 98.40% for Statlog and Cleveland datasets, respectively. In addition, we designed and developed the prototype of the Heart Disease CDSS (HDCDSS) to help doctors/clinicians diagnose the patients’/subjects’ heart disease status based on their current condition. Therefore, early treatment could be conducted to prevent the deaths caused by late heart disease diagnosis.

Published in: IEEE Access
DOI: 10.1109/ACCESS.2020.3010511

· One min read

Abstract

Predicting future blood glucose (BG) level for diabetic patients will help them to avoid critical conditions in the future. This study proposed Extreme Gradient Boosting (XGBoost), an ensemble learning model to predict the future blood glucose value of diabetic patients. The clinical dataset of Type 1 Diabetes (T1D) patients was utilized and the prediction models were generated to predict future BG of 30 and 60 minutes ahead of time. The prediction models have been tested tofive children who develop T1D and showed that BG prediction model based on XGBoost outperformed other models, with average of Root Mean Square Error (RMSE) are 23.219 mg/dL and 35.800 mg/dL for prediction horizon (PH) 30 and 60 minutes respectively. In addition, the result showed that by utilizing statistical-based features as additional attributes, most of the performance of predictions model were increased.

Published in: IOP Conference Series: Materials Science and Engineering
DOI: 10.1088/1757-899X/803/1/012012

· 2 min read

Abstract

Understanding customer shopping behavior in retail store is important to improve the customers' relationship with the retailer, which can help to lift the revenue of the business. However, compared to online store, the customer browsing activities in the retail store is difficult to be analysed. Therefore, in this study the customer shopping behavior analysis (i.e., browsing activity) in retail store by utilizing radio frequency identification (RFID)-enabled shelf and machine learning model is proposed. First, the RFID technology is installed in the store shelf to monitor the movement tagged products. The dataset was gathered from receive signal strength (RSS) of the tags for different customer behavior scenario. The statistical features were extracted from RSS of tags. Finally, machine learning models were utilized to classify different customer shopping activities. The experiment result showed that the proposed model based on Multilayer Perceptron (MLP) outperformed other models by as much as 97.00%, 96.67%, 97.50%, and 96.57% for accuracy, precision, recall, and f-score, respectively. The proposed model can help the managers better understand what products customer interested in, so that can be utilized for product placement, promotion as well as relevant product recommendations to the customers.

Published in: IOP Conference Series: Materials Science and Engineering
DOI: 10.1088/1757-899X/803/1/012022

· 2 min read

Abstract

Radio Frequency Identification (RFID) technology has significantly improved in the past few years and is presently sought for implementation in the identification and traceability of perishable food in the food sector to safeguard food safety and quality. It is currently considered a worthy successor to the barcode system and has significant advantages for monitoring products in the perishable food supply chain (PFSC). The present study proposes a traceability system that utilizes RFID and Internet of Things (IoT) sensors. RFID technology can be used to track and trace perishable food while IoT sensors can be used to measure temperature and humidity during storage and transportation. Furthermore, it is important that RFID gates can identify the direction of tags and whether products are being received or shipped through the gate. In this study, machine-learning models are utilized to detect the direction of passive RFID tags. The input features are derived from receive signal strength (RSS) and the timestamp of tags. The proposed system has been tested in the perishable food supply chain and has revealed significant benefits to managers and customers by providing real-time product information and complete temperature and humidity history. In addition, by integrating a machine-learning model into the RFID gate, tagged products that move in or out through a gate can be correctly identified and thus improve the efficiency of the traceability system.

Published in: Food Control
DOI: 10.1016/j.foodcont.2019.107016

· 2 min read

Abstract

Early diseases prediction plays an important role for improving healthcare quality and can help individuals avoid dangerous health situations before it is too late. This paper proposes a disease prediction model (DPM) to provide an early prediction for type 2 diabetes and hypertension based on individual’s risk factors data. The proposed DPM consists of isolation forest (iForest) based outlier detection method to remove outlier data, synthetic minority oversampling technique tomek link (SMOTETomek) to balance data distribution, and ensemble approach to predict the diseases. Four datasets were utilized to build the model and extract the most significant risks factors. The results showed that the proposed DPM achieved highest accuracy when compared to other models and previous studies. We also developed a mobile application to provide the practical application of the proposed DPM. The developed mobile application gathers risk factor data and send it to a remote server, so that an individual’s current condition can be diagnosed with the proposed DPM. The prediction result is then sent back to the mobile application; thus, immediate and appropriate action can be taken to reduce and prevent individual’s risks once unexpected health situations occur (i.e., type 2 diabetes and/or hypertension) at early stages.

Published in: IEEE Access
DOI: 10.1109/ACCESS.2019.2945129