Skip to main content

Detecting Movement and Direction of Tags for RFID Gate

· One min read


Radio frequency identification (RFID) technology can be utilized to monitor tagged product movements and directions for the purpose of inventory management. It is important for RFID gate to identify the several RFID readings such as movement type and direction as well as the static tags (tags that accidentally read by the reader). In this study, random forest (RF) method is utilized to detect the movement type and direction of RFID passive tags. The input features are derived from received signal strength (RSS) and timestamp of tags. The result showed that machine learning models successfully distinguish direction and movement type of tag. In addition, proposed model based on random forest generated accuracy as much as 98.39% and was significantly superior to the other models considered.

Published in: IEEE Xplore
DOI: 10.1109/ICST47872.2019.9166196